LittleSmalltalk – The Primitives
Author:

Danny Reinhold

Date:

March, 30th 2007

Status:

Published

Version:
0.1
Describes LST:
5.0 alpha 009

Summary

This documents lists and roughly describes the list of primitives in the LittleSmalltalk system.

Please note that this set of primitives is subject to change and may be extended from release to release.

If you need to use primitives in your Smalltalk code please encapsulate the primitive calls in a central place so you can change the calls if necessary.

Currently I don't plan changes – only additions – but I don't guarantee that I will never change the currently present primitives!

What is a primitive in LittleSmalltalk?

When you write programs with LittleSmalltalk you will usually do this by writing code in the Smalltalk dialect provided by LittleSmalltalk. But sometimes (well, currently often) you need to communicate with the virtual machine (VM) or the operating system etc. more directly.

For doing so the LittleSmalltalk system provides a mechanism called primitives.

A primitive is a piece of ANSI-C code in the virtual machine that can be called and parameterized by your Smalltalk code and that can create results that you Smalltalk code then can evaluate.

How does the primitive mechanism work?

To understand how the primitive mechanism is realized in LittleSmalltalk we have to look at both sides: The Smalltalk side and the C side within the virtual machine.

How to call a primitive within Smalltalk code?

Every primitive is identified by a unique number.
To call a primitive simply write this number between "<" and ">".

For example to call primitive 85 you could write:

<85>

If the primitive returns a useful result you can use it as you would use any other Smalltalk object like this:
| tmp |

tmp <- <85>

Transcript print: ('The result is: ' + tmp asString).

^tmp

Most primitives require one or more arguments. Simply add these arguments to the primitive call like so:
<85  'Argument1'  2  #ArgumentThree>

In this example the primitive 85 would consume three arguments, one String, one SmallInt and one Symbol object.

Attention: Be careful to always provide arguments of the correct type! The primitive implementations within the virtual machine usually don't convert any objects to other classes and may cause problems for example when a String is expected and a Symbol is given!

How does the mechanism work in the VM?

Look into the file interp.c. This file represents the main part of the execution engine of the virtual machine. You will find a huge case statement  checking for the bytecode "Opcode_DoPrimitive".
Within that case block you'll find another larger switch statement that checks which exact primitive shall be executed.

Most elementary system primitives are for performance reasons directly implemented within their respective case blocks and have rather small ids.

Some blocks of primitives are implemented in other files, namely gui_primitives.c, ffi_primitives.c and sqlite_primitives.c. Some io related primitives are implemented in main.c.

If a primitive id is not directly implemented in interp.c, the VM calls the function primitive() in main.c. If the primitive id belongs to the more specific primitive blocks the primitive call is delegated to the special implementation file.

The LittleSmalltalk list of primitives

These primitives are currently available in the LittleSmalltalk system.

In some cases the primitive id is not specialized enough to identify a single action (like "open dialog") but to identify a logical group (like "gui actions"). In those cases the first argument to the primitive is interpreted as an action id that specifies the detailed action within the action group.

	Id
	Action Id
	Name
	Arguments
	Description

	1
	-
	Object Identity
	2 objects
	Returns true if the arguments refer to the same (!) object (identity test – not equivalence test!)

	2
	-
	Object Class
	1 object
	Returns the class the argument

	3
	-
	Print Character
	1 Char
	Prints a single character to stdout. Please note that with a normal LittleSmalltalk distribution stdout is not any longer connected to a terminal when you are using the GUI only version

	4
	-
	Object Size
	1 object
	Returns the size the object in bytes. This is the size that is required to store the object in memory

	5
	-
	Object #at:put:
	3 object index object2
	Stores object2 into member variable index of object object. Note that index must be a SmallInt (0 <= index < 1000).

	6
	-
	New Process Execute
	1 Process
	Executes the specified process (note that this doesn't mean OS level processes, but Process objects within LST)

	7
	-
	Create New Object
	2 size class
	Creates an object  of class class with size size and allocates memory for it. The object is returned. Please note that size has to be a SmallInt (0 <= size < 1000).

	8
	-
	Block Invocation
	
	Executes a block

	9
	-
	Read Characater
	
	Reads a single character from stdin and returns its ASCII value or nil if stdin reached EOF. Please note that GUI only versions of LST are not connected to a terminal and don't have an stdin channel open.

	10
	-
	SmallInt Addition
	2 SmallInt
	Adds the arguments and returns the result

	11
	-
	SmallInt Division
	2 SmallInt
	Division on SmallInt arguments

	12
	-
	SmallInt Remainder
	2 SmallInt
	Remainder operation on SmallInt arguments

	13
	-
	SmallInt <
	2 SmallInt
	< operator on SmallInt arguments

	14
	-
	SmallInt =
	2 SmallInt
	Equality (equivalence) test on SmallInt arguments

	15
	-
	SmallInt *
	2 SmallInt
	Multiplication of two SmallInt arguments

	16
	-
	SmallInt -
	2 SmallInt
	Subtraction on SmallInt arguments

	17
	-
	-
	-
	Not specified

	18
	-
	Debugging ON
	-
	Activates some debugging messages (for example regarding the GC). Has effect only if LST has an open stdout channel

	19
	-
	Error Trap – HALT
	
	Stops execution of the current LST process (not on OS process level)

	20
	-
	Byte Array Allocation
	2 size class
	Creates a byte array object of class class and with size size. Please note that size must be a SmallInt (0 <= size < 1000)

	21
	-
	String at
	2 string index
	Returns the character at index index in the string

	22
	-
	String at:put:
	3 string index char
	Sets the character at index index of the string to char

	23
	-
	String clone
	
	Clones a string object

	24
	-
	Array at
	2 array index
	Returns the item at index index of the array. Please note that index must be a SmallInt (0 <= index < 1000)

	25
	-
	New Object Allocation
	2 class size
	Creates and returns a new object of class class and with size size. Please note that size is a large integer passed as a string.

	26
	-
	Byte Array Allocation
	2 class size
	Creates and returns a byte array object of size size. Please note that size is a large integer passed as a string.

	27
	-
	String at
	2 string index
	Returns the character at index index. Please note that index is a large integer passed as a string.

	28
	-
	String #at:put:
	3 string index char
	Sets the character at index index in the string to char. Please note that index is a large integer passed as a string.

	29
	-
	Object #at:put:
	3 object index object2
	Sets the member variable at index index in the object object to object2. Please note that index is a large integer passed as a string.

	30
	-
	File Open
	2 string string2
	Opens the binary file string with mode string2 ('r', 'w', 'a'). Returns a file id.

	31
	-
	File Read Char
	1 fileId
	Returns the next character from the file.

	32
	-
	File Write Char
	2 fileId char
	Writes a character to the file file

	33
	-
	File Close
	1 fileId
	Closes the file

	34
	-
	File Out Image
	1 fileId
	Write the LittleSmalltalk image to the file file

	35
	-
	Edit String
	1 string
	Opens an external editor and allows the user to edit the argument string. The modified string is returned. Please note that this primitive is obsolete and will be removed in the future.

	36
	-
	SmallInt To Int
	1 SmallInt
	Returns an Int object representing the same number as the SmallInt argument does

	37
	-
	Int to SmallInt
	1 Int
	Converts an Int object into a SmallInt object if possible (ie if 0 <= value < 1000).

	38
	-
	Memory Allocate
	1 size
	Allocates size bytes of memory via malloc()

	39
	-
	Memory Read Byte
	1 address
	Reads one byte of memory from the specified address

	40
	-
	Memory Write Byte
	2 address byte
	Writes the byte byte to the memory at the specified address

	41
	-
	Memory Allocate Int Array
	1 size
	Allocates memory for an array of integer values via malloc().

	42
	-
	Memory Read Int
	1 address
	Reads an integer value from the specified memory address

	43
	-
	Memory Write Int
	2 address integer
	Write an integer value to the specified address

	44
	-
	Memory Free
	1 address
	Deallocated the specified memory via free()

	45
	-
	File Open
	2 string string2
	Opens the file string with mode string2 ('r', 'rb', 'w', 'wb' etc.). Returns a fileId.

	46
	-
	File Write String
	2 fileId string
	Writes the string to the file

	47
	-
	File Delete
	1 string
	Deletes file string.

	70
	-
	Array at
	2 array index
	Returns the object at index index from the array. Please note that index is a large integer passed as a string

	80
	-
	Object Set Class
	2 object class
	Changes the class of an object

	81
	-
	Flush Method Cache
	-
	Flushes the method cache. This is done after compiling a Smalltalk method.

	160
	-
	Show Message
	2 string string
	Displays a message box containing the string with the specified title.

	161
	0
	Create Canvas
	1 string
	Creates a canvas control

	161
	1
	Create Button
	2 string string
	Creates a button control

	161
	2
	Create Toggle
	1 string
	Creates a toggle control

	161
	3
	Create Label
	1 string
	Create a label control

	161
	4
	Create Frame
	
	

	161
	5
	Create List
	
	

	161
	6
	Create EditBox
	
	

	161
	7
	Create Texfield
	
	

	161
	8
	Create Image
	
	Create an image from memory

	161
	9
	Create Color
	
	

	161
	10
	Create Dialog
	
	

	161
	11
	Create File Dialog
	
	

	161
	12
	Create Gauge
	
	

	161
	13
	Create Timer
	
	

	161
	14
	Create SplitBox
	
	

	161
	15
	Create Image
	
	Creates an image from a file

	162
	0
	Create Spacer
	
	

	162
	1
	Create HBox
	
	

	162
	2
	Create VBox
	
	

	162
	3
	Create ZBox
	
	

	162
	4
	Create Radio Box
	
	

	163
	-
	Append Widget
	
	

	164
	-
	Detach Widget
	
	

	165
	-
	Show Widget
	
	

	170
	-
	Register Event
	
	

	171
	-
	Get Next Event
	
	

	172
	-
	Event Loop
	
	Starts a blocking event loop. For testing purposes only. Don't use this primitive within your code.

	173
	-
	Sleep
	
	

	174
	-
	Destroy Widget
	
	

	175
	-
	Set Attribute
	
	

	176
	-
	Get Attribute
	
	

	177
	-
	Register List Event
	
	

	178
	-
	Delete Attribute
	
	

	179
	-
	Show Modal Widget
	
	

	180
	-
	Save Image
	
	

	200
	-
	Open Database
	
	

	201
	-
	Close Database
	
	

	202
	-
	Execute SQL
	
	

	203
	-
	Get Last Row Id
	
	

	204
	-
	Execute Query
	
	

	205
	-
	Release Table
	
	

	206
	-
	Get Error Message
	
	

	207
	-
	Get number of rows in Table
	
	

	208
	-
	Get number of columns in table
	
	

	209
	-
	Get Value from table
	
	

	230
	-
	Open DLL
	
	

	231
	-
	Close DLL
	
	

	232
	-
	Get Last DLL Error
	
	

	233
	-
	Resolve Function
	
	

	234
	-
	Execute Function
	
	Attention: This is subject to change!

	
	
	
	
	


